服務(wù)熱線
產(chǎn)品展示PRODUCTS
品牌 | 其他品牌 | 產(chǎn)地類別 | 進(jìn)口 |
---|---|---|---|
儀器種類 | 在線型 | 應(yīng)用領(lǐng)域 | 環(huán)保,綜合 |
水環(huán)境自動控制系統(tǒng)能夠?qū)λ疁?、溶解氧?/span>pH/CO2、鹽度等環(huán)境參數(shù)進(jìn)行監(jiān)測、記錄和調(diào)節(jié)。僅需一臺電腦,即可同時對多個魚缸、水族箱的一個或者多個參數(shù)進(jìn)行同步、自動調(diào)控,使之達(dá)到預(yù)設(shè)值或者運行自定義程序。
工作時,多臺測量設(shè)備連接到一部電腦,軟件通過藍(lán)牙(無線)或者以太網(wǎng)(有線)控制水泵或者電磁閥,響應(yīng)測量數(shù)據(jù)進(jìn)行實時調(diào)控。
軟件支持Win10/11系統(tǒng),簡單易用,對于四個環(huán)境參數(shù)的任意一個,它使數(shù)據(jù)記錄、傳感器校準(zhǔn)、測量單位的更改、自動程序的設(shè)定等步驟變得輕松友好。使用者可根據(jù)具體的研究應(yīng)用自定義運行程序,包括分級調(diào)節(jié)或者正弦模式,以模擬日變化等自然波動。而且程序能夠被保存和加載,以便進(jìn)行快速、一致性的設(shè)置。
功能特點
1.新穎直觀的軟件界面,適用于Win10和Win11
2.僅需一臺電腦,通過多種傳輸方式(藍(lán)牙、以太網(wǎng)和USB)和多臺設(shè)備相連
3.內(nèi)置程序編輯功能—可保存和加載自定義程序文件
4.溫度、鹽度、壓強(qiáng)實時補(bǔ)償
5.具備長期監(jiān)測/記錄/調(diào)節(jié)的性能
6.數(shù)據(jù)帶時間戳,以.csv(Excel)文件格式保存
具體配置
1.OmniCTRL軟件
軟件既能夠和監(jiān)測水環(huán)境參數(shù)的設(shè)備無縫通信,也能夠通過控制水泵/電磁閥對水環(huán)境參數(shù)進(jìn)行調(diào)節(jié)。配合相應(yīng)的硬件,可同步調(diào)控不同的參數(shù),如水溫和溶解氧;既能單向調(diào)控(參數(shù)調(diào)高或調(diào)低),又能雙向調(diào)控(參數(shù)調(diào)高和調(diào)低)。軟件實時顯示實驗過程中的每個水環(huán)境參數(shù)。所有圖表都能夠按照喜好進(jìn)行編輯,導(dǎo)出至Excel或保存成圖像。所有記錄數(shù)據(jù)也能夠被保存和導(dǎo)出成.csv文件,以便于在Excel中進(jìn)一步分析。
2.PowerX4工業(yè)級四位插座及遠(yuǎn)距離藍(lán)牙適配器
PowerX4四位插座能夠?qū)崿F(xiàn)基于軟件驅(qū)動的控制,通過以太網(wǎng)或藍(lán)牙的方式對水泵或電磁閥的開閉進(jìn)行控制。每個延時控制的電參數(shù)(例如輸入電壓和功耗等)能夠被軟件監(jiān)測和記錄,以便于對所連接的設(shè)備進(jìn)行診斷。遠(yuǎn)距離藍(lán)牙適配器包括1類藍(lán)牙適配器和外接天線,能夠?qū)⒊R?guī)PC(2類藍(lán)牙)的無線距離翻倍。
3.水環(huán)境監(jiān)測和控制單元
可分為溫度、溶解氧、鹽度、pH/CO2、溶解氧&溫度、鹽度&溫度、pH/CO2&溫度共計7種配置。每種配置包括相應(yīng)的監(jiān)測單元(溶解氧測量儀、pH測量儀、鹽度測量儀等)和控制單元(水泵、電磁閥、管路等)。如下圖為pH/CO2自動控制系統(tǒng)組成如下圖(分別為單向調(diào)控和雙向調(diào)控):
應(yīng)用案例
參考文獻(xiàn)
1.Cline, A.J., Hamilton, S.L., and Logan, C.A. (2020). Effects of multiple climate change stressors on gene expression in blue rockfish (Sebastes mystinus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 239, 110580.
2.Duckworth, C.G., Picariello, C.R., Thomason, R.K., Patel, K.S., and Bielmyer-Fraser, G.K. (2017). Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and zinc or nickel exposure. Aquatic Toxicology 182, 120–128.
3.Hamilton, S.L., Kashef, N.S., Stafford, D.M., Mattiasen, E.G., Kapphahn, L.A., Logan, C.A., Bjorkstedt, E.P., and Sogard, S.M. (2019). Ocean acidification and hypoxia can have opposite effects on rockfish otolith growth. Journal of Experimental Marine Biology and Ecology 521, 151245.
4.Huang, X., Jiang, X., Sun, M., Dupont, S., Huang, W., Hu, M., Li, Q., and Wang, Y. (2018). Effects of copper on hemocyte parameters in the estuarine oyster Crassostrea rivularis under low pH conditions. Aquatic Toxicology 203, 61–68.
5.Khan, F.U., Hu, M., Kong, H., Shang, Y., Wang, T., Wang, X., Xu, R., Lu, W., and Wang, Y. (2020). Ocean acidification, hypoxia and warming impair digestive parameters of marine mussels. Chemosphere 256, 127096.
6.Kong, H., Wu, F., Jiang, X., Wang, T., Hu, M., Chen, J., Huang, W., Bao, Y., and Wang, Y. (2019). Nano-TiO2 impairs digestive enzyme activities of marine mussels under ocean acidification. Chemosphere 237, 124561.
7.Kraskura, K., and Nelson, J.A. (2020). Hypoxia tolerance is unrelated to swimming metabolism of wild, juvenile striped bass (Morone saxatilis). Journal of Experimental Biology 223, jeb217125.
8.Mackey, T.E., Hasler, C.T., Durhack, T., Jeffrey, J.D., Macnaughton, C.J., Ta, K., Enders, E.C., and Jeffries, K.M. (2021). Molecular and physiological responses predict acclimation limits in juvenile brook trout (Salvelinus fontinalis). Journal of Experimental Biology 224, jeb241885.
9.Murie, K.A., and Bourdeau, P.E. (2021). Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance. Sci Rep 11, 1–12.
10.Shen, Y., Zhang, Y., Xiao, Q., Gan, Y., Wang, Y., Pang, G., Huang, Z., Yu, F., Luo, X., Ke, C., et al. (2021). Distinct metabolic shifts occur during the transition between normoxia and hypoxia in the hybrid and its maternal abalone. Science of The Total Environment 794, 148698.
11.Shrivastava, J., Ndugwa, M., Caneos, W., and De Boeck, G. (2019). Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. Aquatic Toxicology 212, 54–69.
12.Siddiqui, S., and Bielmyer-Fraser, G.K. (2015). Responses of the sea anemone, Exaiptasia pallida, to ocean acidification conditions and copper exposure. Aquatic Toxicology 167, 228–239.
13.Sui, Y., Zheng, L., Chen, Y., Xue, Z., Cao, Y., Mohsen, M., Nguyen, H., Zhang, S., Lv, L., and Wang, C. (2022). Combined effects of short term exposure to seawater acidification and microplastics on the early development of the oyster Crassostrea rivularis. Aquaculture 549, 737746.
14.Wingert, C.J., and Cochlan, W.P. (2021). Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae 107, 102030.
15.Zrini, Z.A., Sandrelli, R.M., and Gamperl, A.K. (2021). Does hydrostatic pressure influence lumpfish (Cyclopterus lumpus) heart rate and its response to environmental challenges? Conservation Physiology 9, coab058.